9 research outputs found

    The hormonal pathway controlling cell death during metamorphosis in a hemimetabolous insect

    Get PDF
    AbstractMetamorphosis in holometabolous insects is mainly based on the destruction of larval tissues. Intensive research in Drosophila melanogaster, a model of holometabolan metamorphosis, has shown that the steroid hormone 20-hydroxyecdysone (20E) signals cell death of larval tissues during metamorphosis. However, D. melanogaster shows a highly derived type of development and the mechanisms regulating apoptosis may not be representative in the insect class context. Unfortunately, no functional studies have been carried out to address whether the mechanisms controlling cell death are present in more basal hemimetabolous species. To address this, we have analyzed the apoptosis of the prothoracic gland of the cockroach Blattella germanica, which undergoes stage-specific degeneration just after the imaginal molt. Here, we first show that B. germanica has two inhibitor of apoptosis (IAP) proteins and that one of them, BgIAP1, is continuously required to ensure tissue viability, including that of the prothoracic gland, during nymphal development. Moreover, we demonstrate that the degeneration of the prothoracic gland is controlled by a complex 20E-triggered hierarchy of nuclear receptors converging in the strong activation of the death-inducer Fushi tarazu-factor 1 (BgFTZ-F1) during the nymphal–adult transition. Finally, we have also shown that prothoracic gland degeneration is effectively prevented by the presence of juvenile hormone (JH). Given the relevance of cell death in the metamorphic process, the characterization of the molecular mechanisms regulating apoptosis in hemimetabolous insects would allow to help elucidate how metamorphosis has evolved from less to more derived insect species

    The emergence of a new weed in maize plantations: characterization and genetic structure using microsatellite markers

    Get PDF
    The objective of this work was to assess the genetic variability and structure of a new weed in Spanish maize fields, and investigate its geographical patterns using 17 microsatellites. Commercial maize varieties (C), maize-like weeds (MLW), putative hybrids with C (WCH), and teosintes (Tm: Zea mays ssp. mexicana and Tp: Z. mays ssp. parviglumis) were analyzed. The weed genetic diversity (MLW and WCH: 0.52) was the lowest (C: 0.59, Tm: 0.66, and Tp: 0.71). Weeds (0.21) and teosintes (Tm: 0.27, Tp: 0.34) showed positive values for the inbreeding coefficient (FIS), which agrees with their low values for the observed heterozygosity (HO), common in wild species; whereas C exhibited a negative FIS value (− 0.06, excess of heterozygous), common in domesticated species. Major clustering agreed with the different types of samples, even if some of the most hybridized weeds branched with the C cluster. Within the weeds, an evident tendency to group together depending on their geographical origin was perceived. Structure analyses confirmed the contribution of C to the genome of those weeds with the highest degree of hybridization. Consistently, the genetic variation (FST) was not negligible only when the teosintes were compared to the C group. Most of the molecular variance occurred within populations (51.83%) and not among populations (10.09%), with the highest value (32.33%) being found within the weed population. These new weeds seem to have a complex origin. Even if they are related to both, C and teosintes (Tm and Tp), they form an unidentified and genetically distinct group (FST: 0.13).Publishe

    Immunoassays on thiol-ene synthetic paper generate a superior fluorescence signal

    No full text
    The fluorescence-based detection of biological complexes on solid substrates is widely used in microarrays and lateral flow tests. Here, we investigate thiol-ene micropillar scaffold sheets (“synthetic paper”) as the solid substrate in such assays. Compared to state-of-the-art glass and nitrocellulose substrates, assays on synthetic paper provide a stronger fluorescence signal, similar or better reproducibility, lower limit of detection (LOD), and the possibility of working with lower immunoreagent concentrations. Using synthetic paper, we detected the antibiotic enrofloxacin in whole milk with a LOD of 1.64 nM, which is on par or better than the values obtained with other common tests, and much lower than the maximum level allowed by European Union regulations. The significance of these results lays in that they indicate that synthetically-derived microstructured substrate materials have the potential to improve the performance of diagnostic assays.QC 20200702ND4I

    Bastard Cabbage (Rapistrum rugosum L.) Resistance to Tribenuron-Methyl and Iodosulfuron-Methyl-Sodium in Spain and Alternative Herbicides for Its Control

    Get PDF
    Complaints about the lack of control of Rapistrum rugosum with tribenuron-methyl and iodosulfuron-methyl-sodium in winter cereals in Northeastern Spain motivated this study. During 2015–2018, greenhouse trials were conducted to test the responses of two possibly resistant (R1 and R2) and two susceptible populations to both active ingredients to determine the response of these populations to alternative herbicides. In the first trial that was repeated twice, populations were treated with both active ingredients (three rates, six replicates), and the lack of control confirmed resistance both times. The second trial was conducted on the self-pollinated progeny of the initial populations (13 rates, 6 replicates) to confirm the heritable character of resistance and to determine the resistance factors related to survival and biomass. Resistance factors based on biomass were 188 and 253 for tribenuron-methyl and 42 and 26 for iodosulfuron-methyl-sodium for R1 and R2, respectively, confirming the strong resistance of the progeny. In the third trial, nine active ingredients (a.i.) registered for broadleaved weed control in winter cereals were tested on the four populations (two rates, four replicates). All the alternative herbicides, except florasulam, results in important phytotoxicity to all tested populations, with 100% efficacy for several a.i. This work is the first report of R. rugosum that is resistant to iodosulfuron-methyl-sodium and the first report in Europe of R. rugosum that is resistant to tribenuron-methyl.Rapistrum rugosumPublishe

    Detection of SARS-CoV-2 Virus by Triplex Enhanced Nucleic Acid Detection Assay (TENADA)

    Get PDF
    SARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed. The search for faster solutions has led to the development of immunological assays based on antibodies that recognize the viral proteins that are faster and do not require any special equipment. Here, we explore an innovative analytical approach based on the sandwich oligonucleotide hybridization which can be adapted to several biosensing devices including thermal lateral flow and electrochemical devices, as well as fluorescent microarrays. Polypurine reverse-Hoogsteen hairpins (PPRHs) oligonucleotides that form high-affinity triplexes with the polypyrimidine target sequences are used for the efficient capture of the viral genome. Then, a second labeled oligonucleotide is used to detect the formation of a trimolecular complex in a similar way to antigen tests. The reached limit of detection is around 0.01 nM (a few femtomoles) without the use of any amplification steps. The triplex enhanced nucleic acid detection assay (TENADA) can be readily adapted for the detection of any pathogen requiring only the knowledge of the pathogen genome sequence

    Detection of SARS-CoV-2 Virus by Triplex Enhanced Nucleic Acid Detection Assay (TENADA)

    Get PDF
    SARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed. The search for faster solutions has led to the development of immunological assays based on antibodies that recognize the viral proteins that are faster and do not require any special equipment. Here, we explore an innovative analytical approach based on the sandwich oligonucleotide hybridization which can be adapted to several biosensing devices including thermal lateral flow and electrochemical devices, as well as fluorescent microarrays. Polypurine reverse-Hoogsteen hairpins (PPRHs) oligonucleotides that form high-affinity triplexes with the polypyrimidine target sequences are used for the efficient capture of the viral genome. Then, a second labeled oligonucleotide is used to detect the formation of a trimolecular complex in a similar way to antigen tests. The reached limit of detection is around 0.01 nM (a few femtomoles) without the use of any amplification steps. The triplex enhanced nucleic acid detection assay (TENADA) can be readily adapted for the detection of any pathogen requiring only the knowledge of the pathogen genome sequence

    Density related variation in vertical transmission of a virus in the African armyworm.

    No full text
    Larvae of the African armyworm, Spodoptera exempta, are darker and more resistant to baculovirus infection when reared in groups (gregarious form) compared to being reared singly (solitary form). Lepidoptera that survive virus challenge as larvae could potentially retain a sublethal virus infection which is then transmitted vertically to the next generation. Here we examine whether gregarious and solitary forms of the armyworm differ in the costs of surviving virus infection and in their capacity to transmit an active baculovirus infection to their offspring. Pupae of larvae reared gregariously that survived virus challenge weighed significantly less than uninfected individuals, but this was not so for those reared solitarily. This did not, however, translate into differences in fecundity, at least under laboratory conditions. As found in previous studies, pre-oviposition period was shorter for solitary than gregarious insects, and it was also shorter for females that had been challenged with virus as larvae. Both the prevalence of egg batches containing larvae that died from nucleopolyhedrovirus (NPV) infection and the proportion of infected larvae within each egg batch were significantly increased (approximately doubled) when parental moths were previously challenged with the virus during their larval state. This demonstrates that horizontal transmission in one generation can elevate vertical transmission to the next generation. Moreover, prevalence of overt infection in the offspring generation was two to three times greater when parental moths were reared solitarily as larvae than when reared gregariously. Disease prevalence and proportional infection were both independent of the sex of the infected parent and whether or not the egg batch was surface-sterilized to remove potential contaminants. This suggests that the eggs are infected internally (transovarial) rather than externally (transovum). These results help to shed light on the observed temporal pattern of virus epizootics in eastern Africa
    corecore